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Abstract. Honey bees are vital to global agriculture, playing a key role
in pollinating crops and supporting our food supply. Understanding their
foraging behaviors has traditionally involved labor-intensive field exper-
iments, which often come with the risk of human error, especially when
tracking and identifying individual bees within large groups. This paper
introduces a system that uses artificial intelligence (AI) models, along
with an NVIDIA Jetson Xavier for edge computing, to enhance real-
time detection, tracking, and data processing of honey bee flower visits
in the field. Our system combines AI detection and a specially designed
video processing pipeline, offering a practical solution with a user-friendly
interface for field biologists. This approach not only makes field exper-
iments more efficient and feasible, but also enables precise, real-time
video data processing, crucial for making on-the-spot decisions during
experiments. This article delves into the methodology, performance, and
potential future work of the system, showcasing how this combination
of technology and biology opens new possibilities for conducting accu-
rate and high-throughput field experiments, ultimately improving our
understanding and management of honey bee populations.

Keywords: edge computing · embedded AI · artificial intelligence
(AI) · computer vision · real-time · honey bees · pollination · foraging
behavior · experimental biology

1 Introduction

Honey bees play an essential role in agriculture, being responsible for the polli-
nation of crops that amount to 12 billion dollars in the United States each year,
and are crucial for global food security [1]. Given the importance of their role,
understanding their foraging behavior is essential for optimizing the health and
well-being of their colonies [2]. This, in turn, can lead to improved agricultural
productivity.

One of the traditional methods used by biologists to understand foraging
behaviors and task specialization of individuals in bee colonies involves perform-
ing artificial flower patch experiments [3]. These experiments require the identi-
fication and tracking of bees at the individual level, which is typically achieved
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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through marking techniques involving gluing unique identifiable tags to the bees,
or painting the bees. However, tracking a large number of bees simultaneously,
which is essential to achieve statistically relevant sample sizes, is a challenging
endeavor and has the potential for human error.

Advancements in artificial intelligence (AI) and computer vision present an
opportunity to streamline and improve the accuracy of this detection and track-
ing process. However, AI image/video detection models require robust hardware
for fast inference, often resulting in the need for cumbersome equipment and
substantial energy requirements, which are not well suited for experiments in
the field [4].

Addressing this challenge, we introduce an integrated system designed for
edge computation for studying honey bee foraging behaviors, specifically employ-
ing the NVIDIA Jetson Xavier. This system not only makes field experiments
more feasible but also allows for in-field calibration and real-time video data
processing, which is indispensable for easy deployment in the field and for on-
the-spot experimental decisions such as capturing an individual with a peculiar
behavior or phenotype for further analysis.

The significance of this technology lies in its ability to perform accurate and
high-throughput field experiments, ultimately improving our understanding and
management of honey bee populations. This article discusses the challenges with
traditional approaches, highlights the opportunities presented by AI and com-
puter vision, and introduces an integrated system designed for edge computa-
tion, offering a practical solution for studying honey bee behaviors in real-world
conditions.

2 Related Work

The synergy between computational methods and biological field experiments
has spurred a variety of research efforts with diverse approaches to understanding
and monitoring insect pollinators. In the context of automated video monitor-
ing, several studies provide insights and foundational strategies relevant to our
research.

Pegoraro et al. published a review article of strategies involving automated
video monitoring systems for insect pollinators in field conditions [5]. Their
review includes systems that leverage motion detection to trigger video record-
ing of pollinator visits, relying on post-experiment analysis. Although certain
systems under their review employ machine learning algorithms, they discuss no
implementations of real-time detection and analysis capabilities.

Kane et al. [6] introduced DeepLabCut-Live!, which was developed for the
estimation of low-latency real-time pose of animals. The system achieves approxi-
mately 71fps on a video of 917× 698 resolution with a MobileNetV2-0.35 model,
using powerful hardware (Titan RTX). Notably, when transposed to an edge
computing environment (NVIDIA Jetson Xavier), the performance dropped to
27fps. Additionally, DeepLabCut-Live! is not designed for multi-animal real-time
tracking.
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Droissart et al. [7] developed PICT (plant-insect interactions camera trap),
a camera trap system based on a Raspberry Pi Zero, designed to record animal
activity when motion is detected. The system is inexpensive and weatherproof,
adequate for recording video in the field, but videos must be analyzed via post-
processing.

Delisle et al. [8] published a systematic review on ‘next-generation camera
trapping’. The efforts they describe are geared towards expanding knowledge
on wildlife ecology and conservation via acquisition of data at large spatio-
temporal scales. The authors emphasize the potential of machine learning models
to “break the bottleneck” stemming from analyzing the vast quantities of images
and videos acquired by camera trapping systems.

Bjerge et al. [9] built a system prioritizing real-time insect monitoring, using
computer vision and deep learning. Deployed on an NVIDIA Jetson Nano, the
system demonstrated on-site real-time insect species classification (utilizing the
YOLOv3 architecture) at 0.33 frames per second on 1080p video. While insect
species classification was performed on site, filtering and tracking of insects was
performed remotely.

Rodriguez et al. [10] used video recordings from the entrance of honey bee
colonies to monitor foraging activity. Deep Learning models running in High
Performance Computing facility were used to analyze the data at scale in order
to estimate entrance, exit, and pollen intake.

Ratnayake et al. [11] analyzed pollination behavior in wildflower clusters by
combining background substraction and deep-learning, with the potential for
future low-power implementation on a low-power device.

Building upon previous research, the current study aims to leverage real-time
detection, enhance practical field usability, and provide an intuitive interface.
This approach capitalizes on the strengths of previous systems while addressing
their limitations.

Fig. 1. Overview of the system architecture.
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3 Methodology

3.1 System Components

Our system incorporates several hardware and software components (Fig. 1). A
Basler USB3 camera (a2A2840-48ucPRO) is used to capture high-quality video
streams of honey bees in the artificial flower patch. This video feed is then
processed by the NVIDIA Jetson Xavier. A web application interface can be
accessed directly on the Jetson or on an auxiliary computer. Figure 2 shows
the system deployed at the experimental agricultural station in Gurabo, Puerto
Rico.

3.2 Video Processing Pipeline

The central part of the system is the video processing pipeline. This pipeline
is built atop the NVIDIA DeepStream SDK, which is highly optimized to take
advantage of NVIDIA hardware, performing tasks that include video decoding
and encoding, AI inference, and real-time multi-object tracking. Each frame
is processed through the pipeline, where bee detection takes place through a
YOLOv5n model as the primary GPU inference engine, optimized for inference
with NVIDIA TensorRT. The system captures essential metadata for each bee
detection, including frame number, timestamp, tracking ID, and bounding box
coordinates that encapsulate the detected bee. The tracking ID organizes the
detections into tracks, starting when an insect enters the field of view, until it is
no longer visible. This metadata is streamed via Apache Kafka to be stored in
a MongoDB database for storage and retrieval. Additionally, for every detected
and tracked bee, a JPEG image is generated and stored to disk, to be used for

Fig. 2. System deployed on the field.
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individual reidentification. This visual snapshot helps researchers by providing
a visual reference of each visiting bee, which can be rendered in the experiment
web interface.

3.3 Web Application

To ensure that the system is not only robust but also user-friendly, it is managed
through an interactive web application. This application, constructed using the
Flask micro web framework, is depicted in Fig. 3. The choice of this framework
was guided by its lightweight nature, which makes it particularly suitable for real-
time edge computing. The web application serves multiple purposes: experiment
configuration, flower patch calibration, and real-time monitoring of bee flower
visits.

Fig. 3. Web application user interface - main screens.

An additional advantage lies in the accessibility of the application. While it
can be directly accessed on the Jetson, its design also supports remote access
from auxiliary devices such as laptops. This feature is especially beneficial during
field experiments, allowing multiple researchers to simultaneously monitor the
experiment and aiding in data logging and dynamic decision making.

3.4 Bee Visit Detection

Developing an automated approach to discern visits from bees is crucial to make
the bee monitoring process feasible for a large number of individuals. A bee
visit is quantitatively defined as a tracked bounding box that persists beyond
a user-determined temporal threshold within the center of an artificial flower,
where the experimenters deposit artificial nectar. The visit detection algorithm
involves several stages:

– Experiment Configuration: A graphical user interface was developed to
allow researchers to set up the experiment parameters. The configuration
includes the experiment name, the number of flowers within the artificial
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patch, the spatial coordinates of each flower (and its central point), and the
time threshold before confirming a bee visit. The interface provides automatic
detection of the square flowers using OpenCV, as well as interactive editing
from an image snapshot in a graphical canvas built using Fabric.js.

– DeepStream Pipeline Integration: After configuration, the interface lets
the user signal the initiation of the DeepStream pipeline, activating real-time
experiment monitoring.

– Real-Time Polling and Analysis: While the experiment is active, bee
detections are processed to continuously monitor the state of all visible
bees and detect visit events, which are then stored back into the MongoDB
database. The web interface retrieves these visit events to display them in the
interface.
To enable the determination of bee visits, a track state object is maintained
to build a temporal track for each bee, comprising five (5) distinct states
(Fig. 4):

• Pending: Triggered when bee detection coordinates are on a flower, but
not its center.

• In center: Activated once a bee’s bounding box overlaps a flower’s center,
initiating a timer to track its duration within this locus.

• Visiting: Transitions from ‘in center’ when the stay of a bee exceeds the
predefined time threshold, logging the duration of the visit.

• Out of flower: Assigned when a bee ceases to be detected within the
flower, leading to deletion of its track state after a specified duration in
this state.

• Terminated: The bee object is removed from the state controller if it is
‘out of flower’ for longer than a predefined threshold.

Fig. 4. Bee visit detector state diagram.

Figure 5 illustrates an example of a honeybee being tracked during an artifi-
cial flower visit.
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Fig. 5. Example of a bee visit with state transitions.

Regarding multiple visits by the same individual or mere pass-through occur-
rences, transitions from states ‘in center’ and ‘visiting’ back to ‘pending’ are
allowed, allowing for cyclic traversal through the state diagram. To avoid over-
flowing the state controller of the system, when the bee is not detected, we
classify it as ‘out of flower’ and remove the state object of the bee after a pre-
configured amount of time.

3.5 Flower Patch Re-calibration

During an experiment in the field, it is common for the artificial flower patch to
be physically moved due to wind or human interference. To account for this, we
implemented a feature that allows the user to recalibrate the flower coordinates
during the experiment’s execution. A dedicated button in the user interface sends
a command to the DeepStream pipeline to encode a frame of the current exper-
iment setup as a JPEG image, which is saved as the most recent experiment
image. Utilizing OpenCV’s Python module, Scale-Invariant Feature Transform
(SIFT) keypoints are put in correspondance to compute an affine matrix trans-
form, mapping differences between previous and current flower patch images.
Subsequently, this matrix is applied to the original flower coordinates, ensur-
ing the integrity and consistency of the experiment data amidst environmental
perturbations. This approach ensures that the intrinsic dynamic nature of field
experiments is taken into account, maintaining the precision and reliability of
the monitoring system under changing conditions.

4 Performance

The performance assessment, based on the deployment of the proposed pipeline,
was directed towards measuring its performance under defined parameters. With
an input resolution and size of 1184× 1184 pixels for the YOLOv5n bee detec-
tion model, optimized with TensorRT, crucial metrics, specifically framerate and
percent CPU load of the DeepStream process, were benchmarked in various test
scenarios for both the FP32 and INT8 network modes (Table 1).

Hardware video encoding was performed with the H.264 codec at a bit rate of
8 Mbps. Enabling video encoding did increase CPU load, but did not decrease
the framerate, demonstrating the Jetson Xavier’s video encoding capabilities.
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Table 1. System Performance Benchmarks. CPU load for the DeepStream process
accounts for multiple cores.

Network Mode Video Encoding Output Rendering Framerate (fps) DeepStream CPU load (1 min avg)

FP32 Enabled Enabled 60 fps 170%

FP32 Disabled Enabled 55 fps 139%

FP32 Enabled Disabled 67 fps 106%

FP32 Disabled Disabled 64 fps 79%

INT8 Enabled Enabled 60 fps 128%

INT8 Disabled Enabled 60 fps 112%

INT8 Enabled Disabled 110 fps 141%

INT8 Disabled Disabled 110 fps 105%

Turning off display output rendering allowed the framerate to increase to the
camera’s maximum output of 110 fps.

When comparing the quantized INT8 model with the FP32 model, the INT8
model performed faster in almost all cases. An exception was found in the CPU
load of the DeepStream process when video encoding and output rendering were
both disabled, possibly because the framerate was capped at the display’s max-
imum of 60 fps.

Table 2. System Visit Detection Performance.

Video clip ID Precision Recall F1 Score

1 0.75 1.0 0.86

2 0.60 0.90 0.72

3 0.63 0.94 0.74

Overall 0.65 0.94 0.77

To assess the performance of the automatic visit detection system, humans
annotated three 1-minute clips from different videos of honey bees visiting artifi-
cial flowers, for a total of 37 visits with duration ≥ 1 s. The video clips were used
as input to the system with the faster INT8 quantized model and the system’s
visit detection performance was calculated (Table 2). Although recall was high
(0.94 overall), precision was lower (0.65 overall) due to the system overdetecting
visits. The main reason for the additional visits reported by the system is due
to the way a bee visit is calculated: the overlap of a bee’s bounding box and
the flower’s center. This caused bees walking close to the center of the flowers
to sometimes be detected as visiting by the system. A possible solution to this
issue is integrating a pose detection model to identify the bee’s head, enabling
better spatial detection of bee drinking events during flower visits, and reducing
false positives.

This level of performance illustrates the system’s capacity to deliver
joint real-time analytics and concurrent video recording, which is vital for
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post-experimental reviews and data validation, without sacrificing temporal res-
olution or computational efficiency.

5 Discussion

The integration of artificial intelligence (AI) into biological research has opened
up new opportunities which were previously challenging due to technical and
computational limitations. This study outlines a system that combines Deep
Learning AI techniques, edge computing, and a user-friendly interface to monitor
bee behavior in a practical and effective manner. Understanding the foraging
patterns of bees is crucial, not only for conservation efforts, but also for the
impact it has on our agricultural systems. Using AI to track and analyze their
behavior in real time allows for a detailed examination of data and provides a
deeper understanding of bee behavior in natural environments.

The adaptability of our system to monitor other insects or even larger ani-
mals, with modifications to the detection and tracking algorithms, poses an
interesting possibility. Embedding more complex behavioral analysis algorithms
could provide deeper insights into behavioral patterns and interactions between
different species, expanding the ecological understanding that can be achieved
with the system.

6 Conclusions and Future Work

The system described in this article integrates an AI detection architecture with
a hardware-optimized video processing pipeline and an intuitive user interface,
crafting a cohesive hardware/software solution that is applicable in the field by
experimental biologists. Through the lens of the proposed system, we illustrate
the transformative potential of edge AI in field biological experimentation, with
the potential to enable the execution of biological assays with higher throughput
while increasing the accuracy, precision, and reproducibility of measurements.
Integration of AI into edge systems enables the emergence of innovative tools,
which markedly enhance experimental field work.

We believe that by using technology to better understand and analyze bee
foraging behavior, not only do we provide a versatile tool for field biologists but
also lay solid groundwork for future research.

Moving forward, there are several paths for development and improvement:

– UI Improvements: Refining the user interface to enhance the user expe-
rience, making it even more intuitive and easy to use. One such addition
is a gallery view in which experimenters can examine the most recent bee
detections on a single condensed page.

– Identity annotation: Allowing researchers to annotate individual identi-
ties during the experiment within the web application will allow for easier
analytics and decision-making during the assay.
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– Additional Inference Capabilities: Adding AI inference engines for auto-
matic classification and re-identification of individual bees during an experi-
ment will increase the system’s capabilities, providing more detailed data and
allowing for a more in-depth analysis of the results.

– Model Optimization: Improving the bee detection model to increase accu-
racy and inference speed. Techniques such as model distillation might help
boost its performance and efficiency without losing accuracy. Moreover, imple-
menting a pose detection model can aid in accuracy by providing information
on the exact position of the head, potentially decreasing false positives in the
visits detection.

By continuing to merge additional technological advances with biological
research, the system described in this paper provides a platform for future explo-
ration, with the potential to be extended to new applications in exploring and
understanding behaviors and dynamics in behavioral biology.
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